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with  artificial 
	 intelligence

Hidden	treasure

We’ve all heard the stories of lost treasures being found in dust- filled attics, 

locked away in forgotten wall safes, or hidden in secret compartments of antique 

desks. Some of these true accounts, such as a rare copy of the Declaration of 

Independence hidden behind wallpaper or an authentic Van Gogh relegated to 

collecting dust in an attic, can lead to seven-  and eight- figure jackpots when the 

discoveries are made.

What about our own treasures locked away in long- forgotten data storage 

drives or plant process computers? Imagine that you could gain keen insight 

into every operational issue you have by using the data you’ve been collecting for 

decades. In a nuclear power plant, data is routinely generated and collected for 

a myriad of purposes—whether it be for core monitoring, exposure accounting, 

equipment monitoring, or other reasons. While that data may serve its primary 

function exceedingly well, the information contained within it and in the aggre-

gate is profoundly richer than most could imagine.

Worldwide, over 40 percent of companies have leveraged their data to some 

degree to enjoy a diverse set of benefits. Topping that list are better understanding of 

customer behavior, improved control of operational processes, better strategic deci-

sions, and cost reductions. Furthermore, those organizations that are able to quan-

tify the gains from leveraging their data have reported an average 8 percent increase 

in revenues and a 10 percent reduction in costs.1 While the nuclear energy sector 

may be late to the party, there is still time to reap the value hidden within its data 

before it is downsampled for archiving, corrupted beyond repair, or lost entirely.

1  C. Bange, T. Grosser, and N. Janoschek, “Big Data Use Cases 2015,” BARC Research, July 2015; 
barc- research.com/research/big- data- use- cases- 2015.
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Current	industry	landscape	(a	mixed	bag)

The outlook for the existing nuclear fleet 

is a complicated one. On the one hand, the 

need for a robust nuclear energy sector has 

never been greater. The overarching need to 

transition to a carbon- neutral energy land-

scape should place nuclear as the favorite 

to replace coal, natural gas, and oil as the 

baseline energy source. The electric grid 

requires reliable “always on” electric power 

that can be supplemented with other forms 

of low- carbon- emitting energy. While solar 

and wind are available 24.5 percent and 34.8 

percent of the time, respectively, the nuclear 

backbone is available 93.5 percent of the time 

in the United States.2

In one sense, the nuclear industry is expe-

riencing a resurgence. Public opinion and 

political will have followed the drive to limit 

or eliminate carbon emissions. People gener-

ally see nuclear as a safe, carbon- free solution 

to preserve the environment. These shifting 

winds are signified by the state of Illinois recently recog-

nizing nuclear energy as critical to achieving its clean air 

goals and committing more than $700 million in support 

of Constellation’s nuclear power plants to avoid several pre-

mature plant shutdowns.3

On the other hand, while the nuclear industry has 

been providing clean, safe power for over 60 years with a 

carbon- free footprint and a pristine safety record, making 

it a keystone of U.S. carbon- free energy production, there 

remain economic forces that challenge its long- term via-

bility. The industry’s unique regulatory environment and 

higher generation costs than those associated with fossil 

fuel plants are both factors that sit squarely at odds with 

our climate objectives. 

Consequently, while many countries are bringing new 

nuclear plants on line to provide carbon- free energy, the 

share of power generation from the domestic nuclear fleet 

is shrinking. As of May 2021, 52 reactors were under con-

struction worldwide, with China planning to build 150 new 

reactors over the next 15 years. Compare this with only two 

2 “What is Generation Capacity?” U.S. Department of Energy, 
Office of Nuclear Energy, May 1, 2020; energy.gov/ne/articles/
what- generation-capacity.

3 “Bill to preserve Illinois nuclear passes legislature,” Nuclear Newswire; 
ans.org/news/article- 3247.

reactors under construction in the United States!

The energy outlook for renewables is a favorable one, with 

the share of power generation from wind and solar dou-

bling between now and 2050.4 This is only part of the equa-

tion, however. Nuclear energy will be vital to meeting our 

collective climate goals with a clean energy mix of wind, 

solar, and nuclear. To ensure the continued viability of 

nuclear energy, we must deepen our understanding of key 

aspects of nuclear power generation and strive to continu-

ously reduce generation costs using the latest, most effective 

technologies available.

There is a clear opportunity to apply artificial intelligence 

(AI) and machine learning (ML) to improve nuclear plant 

efficiency and reduce costs. AI can be used over a wide 

range of nuclear plant operations, from predicting compo-

nent lifetimes and evaluating asset health to understand-

ing core dynamics for more accurate reload planning and 

economical fuel purchasing. The application of AI/ML to 

reload core design has been a key player in reducing reload 

fuel costs, which account for 20 percent or more of total 

power generation costs.

4 Annual Energy Outlook 2021, U.S. Energy Information Administra-
tion; eia.gov/outlooks/aeo. 
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The	reload	process

Today’s operating nuclear plants go through a complex 

process of designing the reactor core as part of the reload 

process (i.e., preparing to reload the core for a new fuel 

cycle). There are many design constraints, goals, and lim-

its that must be met during the reload process to ensure 

a safe and economically viable fuel cycle, such as total 

energy production, fuel exposures (for fuel pellets, fuel 

rods, and fuel bundles), radial bundle power, and ther-

mal limits.

In a typical 24- month nuclear fuel cycle, approximately 

one- third of the fuel is fresh, one- third has been in one 

prior cycle, and one- third has been in the reactor for 

two fuel cycles. The cost of fuel for a two- year fuel cycle 

can be as high as $100 million. Thus, the reload process 

employed by nuclear fuel departments is highly lever-

aged economically, and improvements can yield signif-

icant cost savings. Moreover, the reload process spans 

approximately one year from establishing the design 

goals and limitations, designing the fuel and reactor 

core, licensing the core, fabricating the fuel, shipping the 

fuel to the nuclear station, loading the new fuel into the 

core, and preparing the startup and operating plan for 

the two- year fuel cycle. The energy obtained from each 

fuel bundle must span three fuel cycles and deliver the 

planned energy over its six- year lifetime. If the exploit-

able energy is somehow miscalculated, there is an impact 

on the energy output for the next six years, and thus the 

economic performance of the reactor may be materially 

significant.

Calculations in the reload process, which predict 

energy output six years in advance, are daunting and 

complex tasks. The planning team must navigate a lab-

yrinth of regulations that apply to the complex compo-

nents of the reactor while accounting for a myriad of 

nuances in the fuel that impact ultimate performance 

and the ability to meet thermal limits while delivering 

rated power.

Fuel is not just fuel. The distributions of uranium, 

enrichment, and burnable absorbers such as gadolinium 

all vary throughout the array of assemblies. The distribu-

tion is aimed at meeting safety and operational require-

ments while minimizing fuel costs. In addition, in light 

water reactors, the water, which acts as both a coolant and 

a moderator, flows through channels in the fuel assem-

bly. To complicate matters further, new fuel designs are 

introduced periodically. New designs not only change the 

mechanical design and composition of the fuel but also 

modify the way coolant flows through the bundle, which 

has a ripple effect on energy output.

Stubborn	reload	design	problems

Historically, several problems have persisted that affect 

the ability to further improve the economics of reload 

fuel planning. These problems can limit reductions in the 

amount of fresh fuel required to be loaded into the core 

(known as the reload batch size), resulting in excess direct 

fuel costs. In addition, they can have an impact of power 

generation if the core is less reactive than expected, or by 

the potential need to derate power if conditions require it.

Key problems
 ■ Inability to predict moisture carryover—The 

amount of moisture mixed with steam leaving the reactor’s 

moisture separators, referred to as moisture carryover 

(MCO), has been nearly impossible to predict by conven-

tional methods. There are design specifications limiting 

Relationship of high MCO to cumulative radiation exposure and costs 

at a given generating station. High MCO can lead to accelerated 

rate of erosion of main turbine components (above 0.10%) and 

accelerated rate of erosion of main steam isolation valve internal 

surfaces (at 0.30%).

Continued
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how much MCO is permissible before the operator must 

take remedial action (of which one costly option is a power 

derate). Excess moisture in the steam is problematic for 

many reasons, most importantly due to the ability to carry 

impurities dissolved in the water throughout the entire 

plant. MCO can increase erosion of the internal surfaces 

of the main steam isolation valves and at the turbine, 

potentially causing costly repairs. Perhaps even more trou-

blesome, soluble cobalt- 60 is carried over with the steam, 

increasing plant dose rates and the collective radiation 

exposure of plant personnel. Beyond this, a small reduc-

tion in electrical output is expected with high MCO. Until 

recently, the primary method to mitigate high MCO was 

to design the core with a larger- than- required reload batch 

size, thereby introducing potentially unnecessarily high 

reload fuel costs.

 ■ Unpredictability of eigenvalue in BWRs—The 

hot reactivity parameter of the core (known as keffective or 

simply the eigenvalue) is one of the most fundamental 

parameters in nuclear engineering and has been notori-

ously difficult to predict accurately in boiling water reac-

tors. Its trend directly affects the energy capability of the 

reload core, and an inaccurate eigenvalue projection can 

be costly. If the actual eigenvalue is higher than predicted 

at the rated power, then the designed core’s reactivity is 

less than expected, thus leading to less generation output 

than desired (costing perhaps upward of $1 million per 

fuel cycle). Whereas if the actual eigenvalue is lower than 

predicted at rated power, then the designed core’s reactivity 

is greater than necessary, and more fuel was purchased 

and loaded than required (potentially costing upward of $1 

million more than necessary).

Conventionally, eigenvalue predictions rely on estimates 

made by a committee of experienced core designers looking 

at past eigenvalue behavior and the characteristics of the 

reload core being designed. This approach has its limita-

tions, especially when new fuel or core designs are intro-

duced, and on average has been sufficient to achieve a devia-

tion D ~ ±0.002 between the design and on-line eigenvalue. 

The possibility exists to reduce this deviation fourfold, 

thereby leading, potentially, to millions in annual savings.

 ■ Uncertainty in predicting on-line thermal limits—

Compliance with technical specifications for thermal 

limits is essential for operating reactors. Core designs 

include margin to these limits to prevent challenges to the 

operators. Core designs are performed with what is called 

“off- line” nuclear methods, which have no feedback from 

in- core nuclear instrumentation, while actual core moni-

toring is performed with “on- line” nuclear methods, which 

do have feedback from the in- core nuclear instrumenta-

tion. These differences cause a bias between the off- line and 

on- line thermal limits, which must be taken into account 

during core design. This is a challenge, since the bias varies 

from cycle  to  cycle, which makes its quantification diffi-

cult. The same principle described above applies, where too 

much margin results in increased fuel costs and less- than- 

adequate margin results in operational challenges and 

potential decreased generation revenue.

Accurately predicting the behavior of these import-

ant attributes has been extremely challenging for BWRs, 

because the dominant mode of operation in a BWR is a 

complex two- phase flow in the upper part of the core that 

in turn affects the reactivity. Incomplete understanding 

of the physics of two- phase flow in this region results in 

a costly degree of uncertainty. These problems limit the 

exploration and realization of more economical fuel load-

ing strategies that, if solved, could lead to a 10 percent 

reduction in fuel costs in the aggregate. Importantly, AI 

and ML show significant promise for solving these prob-

lems, with solutions already being deployed in many BWRs 

across the domestic fleet.Disparity between the on-line eigenvalue and design targets 

obtained through conventional means. 
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Energizing	reload	design	with	AI

In 2017, Blue Wave AI Labs and Constellation (formerly 

Exelon Generation) began working together to apply tech-

niques rooted in artificial intelligence to solve some of 

these problems. Constellation operates the largest fleet of 

nuclear plants in the United States (14 BWRs at eight gen-

erating stations, and 7 PWRs at four stations) and, conse-

quently, has a substantial amount of design, performance, 

and operational data relevant to these key challenges. In 

particular, the MCO and eigenvalue predictability prob-

lems were the first to be tackled, and solutions to both are 

being integrated into Constellation’s reload design process.

Machine learning for nuclear power
First, a little jargon. Machine learning is a branch of arti-

ficial intelligence that extracts answers to complex problems 

that may be intractable by more conventional means. It is 

especially useful where large amounts of data are available 

corresponding to unusually complex non linear problems 

that aren’t solvable by analytical techniques or physics- 

based models. While there are many branches within ML, 

the objectives broadly fall into several categories:

 ■ Supervised learning

 ● Regression—used to predict a continuous variable 

such as thermal limits, MCO, or keffective at a given reac-

tor statepoint. 

 ● Classification—used to assign elements to one 

of many categories (for example, equipment mon-

itoring through determination of diagnostic 

health states). 

 ■ Unsupervised learning—used for clustering, anom-

aly detection, dimensionality reduction, and feature 

engineering.

The underpinning of ML is the universal approximation 

theorem, which guarantees that an artificial neural net-

work can represent a true function, F(x), to an arbitrary 

degree of accuracy if certain straightforward conditions 

are met. Even more important is the existence of sufficient 

data with a distribution that approximates the distribution 

expected for the target system.

The training data is the dataset used to infer this func-

tion and consists of many historical observations. The 

function’s inputs, or raw features, are the statepoints of the 

reactor →xi at a given instant in time, whereas the targets are 

the corresponding outputs of the true function, yi = F(→xi). 

The MCO measurements, on-line eigenvalue, or ther-

mal limits are the training targets for the three problems 

described.

Fundamentally, a reactor statepoint is the collection of 

all the information necessary to completely describe the 

state of the core at a given instant. In practice, we must rely 

on limited information that is known through measure-

ment, design, set point, or simulation. For example, the 

measurement of operational parameters such as thermal 

power and core flow, the control rod pattern plus notch-

ing, fuel and lattice designs, and the plethora of outputs 

from the core simulator collectively form an approximate 

representation of the core. By having enough observations 

(→xi , yi), the underlying function that governs a process can 

be learned.

It’s all about the data
Returning to the problems at hand, each two- year fuel 

cycle contains hundreds of daily reactor statepoints. While 

each cycle may contain hundreds of points, in one respect, 

the fuel cycle itself can be regarded as a solemn point that 

codifies all the information pertaining to that designed 

core. As such, it is crucial for data from multiple fuel cycles 

to be pooled together in the training set to learn the com-

plete functional dynamics.

For multi- reactor sites, it may be possible to combine the 

data from each unit if the underlying function is expected 

to be similar. Constellation has between six and eight fuel 

cycles worth of data across most of its BWRs. While this 

may seem like a lot (tens of thousands of datapoints in the 

aggregate), typical applications of ML, such as image rec-

ognition, require millions of training samples. A number 

of techniques have been employed to enhance the datasets, 

including data augmentation for maintaining expected 

distributions, interpolation of training targets, and transfer 

learning to take maximum advantage of information from 

multiple sites. These techniques have made it possible to 

extend the development of highly accurate models to reac-

tors possessing less data than would otherwise be required.

Another challenge to overcome concerns the decision of 

what input features are necessary for training. Oftentimes 

this becomes the major obstacle in adopting AI within a 

Continued
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Visualization of bundle parameters within a BWR core. 

very specialized domain like 

the nuclear energy sector. 

A pure data scientist 

may approach the 

problem with the 

attitude “the more 

inputs the better,” 

but that per-

spective does not 

work when the sheer 

number of inputs matches or 

outweighs the number of training 

examples. 

Here, the input feature space consists of 

tens of thousands of bundle and nodal outputs 

from a core simulator, hundreds of thousands of pin- by- 

pin fuel attributes, and dozens of global reactor variables. 

Left unconstrained, all this information can be used to train 

a model with precisely zero training error and absolutely 

zero predictive power! Where’s the utility in that?

Too many variables and too much training cause the 

model to be useful for the training set only, not more general 

situations. When this occurs, the model has fit the noise in 

the data, masking the underlying functional dynamics, and 

the model is said to be overfit (comically so, in this exam-

ple). Likewise, the complexity of the model’s architecture 

(the number of neurons, for example) also contributes to the 

likelihood of overfitting. Conversely, when a model contin-

ues to perform well in new situations (e.g., new fuel cycles), 

it is said to “generalize” well. Generalization means that the 

underlying dynamics governing the process are captured 

well by the model, and the training process is stopped before 

latching onto the random noise within the data.  

The trick is to find a balance between (1) the size and 

nature of the input feature space and (2) the model archi-

tecture—collectively, the modeling methodology—and to 

meticulously validate the methodology in order to arrive 

at the most generalizable model. For MCO, the answer is 

to reduce the input feature space to a “canonical set” of key 

drivers of MCO through feature engineering and a physi-

cal understanding of the underlying mechanism. In doing 

this, the input feature space is reduced to a few dozen key 

variables that capture the dynamics of MCO. This allows 

us to develop models with parameters that operators can 

control, giving the models not only predictive power but, 

just as important, corrective 

power. For eigenvalue, the 

successful approach 

relies more on the 

nature of the 

model’s archi-

tecture, while 

retaining the 

vast collection 

of input fea-

tures that consti-

tute a reactor statepoint. 

Through the clever transformation 

of each statepoint into a three- dimensional 

image of the reactor core—viewed through various 

“filters” of exposure, void, power, and so on—we exploit a 

convolutional neural network architecture, which has been 

shown to be very effective with tasks like image recogni-

tion and natural language processing.

Predictive power
As with any innovation, results are the ultimate arbiter 

of its value or utility. For MCO, an example of this pre-

dictive capability is illustrated in the graphs on the next 

page, where the model predictions are stacked up against 

MCO measurements for two of Constellation’s units. Here, 

the model predictions are obtained from the exposure 

accounting collected throughout the cycle.

Since the time the model was first deployed, and over 

the past three years, the average prediction error is ±0.018 

percent MCO at this station. This exceptional level of per-

formance is now limited only by the resolution imposed 

from the MCO measurement uncertainty. Similar levels 

of accuracy have been obtained at the 10 additional BWRs 

that have adopted this enabling technology.

Also shown in the graphs, the eigenvalue model perfor-

mance demonstrates a fourfold reduction in prediction 

uncertainty when compared against the current state of 

practice, with an average error less than ±0.0005. More-

over, this level of performance is extensible across the 

BWR fleet, and recent advancements in model architecture 

demonstrate remarkable resilience when new fuel types are 

introduced into the core.
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Seamless integration from reload design to cycle management
These AI- based predictive algorithms have been turned 

into cloud- based platforms, MCO.ai and eigenvalue.ai, 

which are now fully integrated into the reload process. Each 

iteration of the core design, of which there are many, can 

be run through the platform to assess the design’s impact 

on MCO and eigenvalue trend. Core designers can plan 

scenarios at will from their desks and explore hundreds of 

options for bundle specifications, reload batch size, loading 

patterns, reactivity control strategies, and so forth. Remem-

ber, these predictive models are constructed from input 

features derived from core conditions and core simulator 

outputs—all of which are projectable during the early stages 

of the reload design process. Consequently, these tools take 

those core projections and give the core designer a reliable 

forecast of MCO and eigenvalue behavior upward of a year 

before the fuel cycle even commences. In this way, the 

reload core design can be optimized to reduce the reload 

batch size and/or enrichment, lower MCO below the pre-

scribed limits, and ensure that energy requirements are met 

with more reliable eigenvalue forecast. 

These new capabilities extend beyond just core design. 

The same concepts apply to cycle management strategy 

evaluation. If unforeseen changes occur relative to the 

planned operating strategy, such as a fuel failure, unplanned 

Prediction accuracy of eigenvalue and MCO ML models at two BWRs.

Continued
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downtime, or startup delay, then this predictive suite can 

be utilized to analyze alternate operating scenarios and 

provide user- friendly comparisons. In fact, a fuel defect 

occurred at a BWR in 2019 that required power suppression 

control rods to be inserted through the end of cycle. The 

two fully inserted control rods resulted in a larger increase 

in MCO than normal—a step change in MCO from 0.05 

percent to 0.4 percent that can be seen in the Unit 1 MCO 

graph on the previous page (which the model predicted with 

superior accuracy). This raised the question of whether a 

mid- cycle shutdown would be required to remove the fuel 

defect prior to achieving unacceptably high MCO levels. 

By utilizing MCO.ai, an operating strategy was devised to 

maintain MCO levels below the procedural limit through 

end of cycle, thereby avoiding a costly outage (upward of 

$6 million).

The	bottom	line

In partnering with Blue Wave AI Labs, Constellation 

has achieved breakthrough levels of insight and opera-

tional predictability for two long- running problems in 

its BWR fleet. The use of ML integrated with the core 

design and cycle management processes provides fuel 

cost reduction, results in lower plant dose rates, protects 

plant assets, avoids generation revenue losses, and reduces 

rework, which returns hours to the business. Blue Wave 

AI Labs and Constellation are leading the industry with 

these advancements and are pursuing other applications to 

improve nuclear power operation and economics.

The savings of tens of millions of dollars in only a few 

years is just the start to uncovering the hidden treasure 

from the thousands of terabytes covering all plant oper-

ations across the domestic fleet. Blue Wave and Constel-

lation are working to apply these techniques to a host of 

other high- value problems. These include more precise 

thermal limit calculations, virtual calibration and mea-

surements, and remaining useful life of plant components 

that enable true condition- based maintenance strategies. 

Further work of this type is also proceeding in our domes-

tic pressurized water reactor fleet. Finally, much of this 

insight—such as answers to the questions of sensor type 

and number—will be applied to next- generation plant 

designs. The nuclear industry is on the precipice of assum-

ing its natural place as the central backbone of carbon- free 

power. AI will accelerate this ascension and deliver insights 

and savings at a new level. This is just the beginning. 

The authors are thankful to the Nuclear Energy Institute for jointly recognizing Con-

stellation (named Exelon Generation at the time) and Blue Wave AI Labs with a Top 

Innovation Practice (TIP) award for “Moisture Carryover (MCO) Predictions through 

Neural Networks” at the recent NEI 2021 Annual Meeting. The prestigious award in 

the nuclear fuel category recognizes creative ideas that have substantial impact on 

improving the safety and reliability of nuclear energy. The concept of MCO.ai was also 

selected to be part of the Electric Power Research Institute’s Plant Modernization Tool-

box as a Modernization Technology Assessment. EPRI’s Plant Modernization Toolbox 

is a resource to facilitate decision making and execution of the modernization process 

at nuclear power plants. It includes a variety of tools and aids to assist nuclear plants 

to identify and evaluate cost savings from technology and process improvements.
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